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ABSTRACT: Internal coordinates such as bond lengths, bond angles, and torsion
angles (BAT) are natural coordinates for describing a bonded molecular system.
However, the molecular dynamics (MD) simulation methods that are widely used for
proteins, DNA, and polymers are based on Cartesian coordinates owing to the
mathematical simplicity of the equations of motion. However, constraints are often
needed with Cartesian MD simulations to enhance the conformational sampling.
This makes the equations of motion in the Cartesian coordinates differential-
algebraic, which adversely impacts the complexity and the robustness of the
simulations. On the other hand, constraints can be easily placed in BAT coordinates
by removing the degrees of freedom that need to be constrained. Thus, the internal
coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD
for developing multiscale MD method. The torsional MD method is a special
adaptation of the ICMD method, where all the bond lengths and bond angles are
kept rigid. The advantages of ICMD simulation methods are the longer time step size
afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low
frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by
long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made
based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications.
We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure
refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced
sampling methods and project the future use of ICMD simulations in protein dynamics.

1. INTRODUCTION

Molecular dynamics (MD) simulations are commonly used for
(a) studying dynamics of protein structures, (b) protein
structure prediction, and (c) calculating thermodynamic
properties such as free energies, enthalpy, and entropy of
conformational states of proteins.1,2 All-atom Cartesian MD
simulations is a classical mechanics based toolkit using
Cartesian coordinates as degrees of freedom. The Cartesian
MD method is used widely for calculating statistical and
thermodynamic properties of materials and biomaterials. One
of the attractive features of the Cartesian all-atom dynamics
model which uses absolute coordinates is its mathematical
simplicity. There has been extensive development of all-atom
Cartesian dynamics algorithms for thermostats and simulation
ensembles such as constant temperature (NVT), constant
pressure (NPT), and constant stress (grand canonical
ensemble).2 The thermodynamic properties calculated from
these ensemble simulations can be directly compared with
experimental measurements. Additionally, constraints and/or
bias potentials are often used in Cartesian MD to increase the
time step size, enhance conformational sampling, and simulate
large-scale conformational changes. The addition of these
constraints into the Cartesian dynamics makes the equations of
motion differential algebraic, requiring differential-algebraic

equation solvers that can adversely impact simulation robust-
ness and complexity.

Importance of Internal Coordinate Molecular Dynam-
ics Simulation Methods. Bond length, bond angle, and
torsion angle (BAT) relative coordinates are more natural than
Cartesian absolute coordinates for describing the bonded
structure of proteins. MD simulations in BAT coordinates are
referred to as internal coordinate MD (ICMD) methods. In
ICMD models of proteins, degrees of freedom that are
nonessential for effecting large scale conformational changes
in proteins, such as high frequency bond length degrees of
freedom, can be constrained by simply excluding them from the
model.3−6 Not only do the resulting ICMD models have fewer
number of degrees of freedom, but they also retain the simpler
structure of ordinary differential equations instead of the more
complex differential-algebraic structure required for constrained
Cartesian models. Other advantages of ICMD are the
following:

1. The low-frequency torsional coordinates allow larger
time steps for integration of the equations of motion.
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2. Conformational search is more effective in the low
frequency torsional degrees of freedom7−13 and leads to
significant conformational changes.3,7,8,10,13,14

3. Enhanced sampling methods are more effective when
performed in torsional space.4,13,15

4. The six translation and orientation degrees of freedom
for a molecule are explicit coordinates rather than
implicit as in Cartesian models. This is useful when
calculating the conformational entropy using quasi-
harmonic analysis.

5. They provide a large range of options for selecting and
controlling the granularity of the dynamics model.6,10,14

6. Fixman16 potential corrections for constraint-induced
biases in the partition function are easier to apply.17,18

The ability of the ICMD simulation methods to control the
granularity of the dynamics model makes them highly suitable
for the development of multiscale methods and strategies for
the simulation of protein macromolecular complexes and
polymeric materials. Our vision is to develop a robust and
advanced ICMD method that capitalizes on the inherent
advantages of ICMD, and to use these methods to develop a
comprehensive ICMD simulation toolkit for tackling important
problems in structural biology. The coupled nature of the
ICMD coordinates and the higher complexity of ICMD models
however demands far more sophisticated mathematical
techniques and algorithms.19

Challenges in the ICMD Methods and Solutions to the
Bottlenecks. Torsional MD is a well-known example of an
ICMD method that constrains all bond lengths and bond
angles. Many research groups have used the torsional MD
method for simulating the dynamics of peptides and
proteins3,20−22 in addition to clarifying the stubborn challenges
associated with the torsional MD methods.20,22−24 The wider
usage of torsional MD methods has been hampered by serious
bottlenecks that slowed their progress and viability of ICMD
methods as a structural biology tool. Two long-standing
concerns have been (a) the mathematical and computational
complexity of the equations of motion associated with the
ICMD models and (b) the increased rigidity in the torsional
MD dynamics resulting from keeping the bond lengths and
angles constrained, affecting the transition barriers and
probability density functions of states in a protein.
When all the bond lengths and bond angles are constrained

in torsional MD, the equations of motion in the dihedral angle
space become computationally expensive with the solution
scaling as the cubic power of the number of torsion degrees of
freedom. This has been a major bottleneck that stunted the use
and growth of ICMD methods. We developed the generalized
Newton−Euler inverse mass operator (GNEIMO) method that
is based on the wealth of mathematical theory and analysis
using spatial operator algebra techniques originally developed
for spacecraft and robot dynamics domains.19 There has been a
considerable amount of research over the years on the
development of the spatial operator algebra methods19 for the
analysis of robot multibody system dynamics. The key insights
that have been developed included analytical techniques for the
factorization and inversion of the mass matrix for tree-topology
systems. These techniques have opened up the opportunities to
revisit and advance torsional MD simulations and make it
computationally accessible to the wider community. Our spatial
operator algebra based ICMD algorithm for solving the
equations of motion was the first to overcome the ICMD

computational cost bottleneck by reducing costs to being just
linearly, instead of cubically, proportional to the number of
degrees of freedom.5,25 This low cost algorithm has been
adopted by other groups to implement torsional MD
capability.9,26−29 The GNEIMO method has been applied to
study a wide variety of structural biology problems such as
protein folding, protein structure refinement, and domain
motion in proteins.7,8,10−14 This algorithm is now being used
routinely in refining NMR structures (in the software called
CYANA) and X-ray crystal structures (in the software called
NIH-XPLOR). However, these two applications require only
short time scale dynamics and do not require calculation of
accurate thermodynamic properties from simulations.
Although the first challenge was eliminated making torsional

MD simulations computationally feasible with the spatial
operator algebra based solution, the second bottleneck arising
from the rigidity of the model still persisted. The increased
rigidity of the dynamic model stemming from freezing degrees
of freedom led to fewer dihedral transitions and to systematic
errors in the probability density functions for proteins and
peptides. Researchers have observed that the use of rigid
constraints in both bond lengths and bond angles in the
torsional MD simulations alters the potential energy surface
and the free energy surface of the system compared with
unconstrained MD simulations.9,20,23,24,30−34 Addressing the
rigidity of the dynamics model imposed in the torsional MD
simulations, Fixman in the 1970s proposed a compensating
potential that rigorously corrects for treating stiff and
uncoupled bond angles as rigid in the ICMD model, and
generates a partition function that gives probability density
functions closer to that of all-atom Cartesian simulations.23,24,30

While the Fixman potential removes such biases for those bond
angles that are stiff, it remained intractable and hence not tested
for larger branched molecules. By developing a spatial operator
algebra based general purpose and low-cost computational
method to calculate the Fixman potential for all linear and
branched molecules,17,18 we have solved the longstanding
problem of using the Fixman potential in ICMD simulations to
remove constraint-induced biases in thermodynamic properties
and the probability density function. Our studies verify that, as
predicted, the inclusion of the Fixman potential recovers the
equilibrium probability density function of the conformational
states, the transition barrier crossing rates, and the free energy
surface for serial and branched molecules.18 To the best of our
knowledge, this is the first time that the Fixman potential has
been used for ICMD of large and realistic branched polymers.
Overcoming the two long-standing bottlenecks along with

several theoretical and algorithmic advances in the GNEIMO
ICMD method made in the past five years has led to a robust
long time scale ICMD simulation method and an associated
software package for use to study protein structural
dynamics.14,35 The highlights of these methods are described
in section 2, and the highlights of the results for several protein
simulation applications and their comparison to experimental
findings are given in section 3. The current state of the ICMD
methods and the areas that need further development are
discussed in section 4.

2. METHODS
The ICMD method is a molecular dynamics simulation method
performed in BAT coordinates also known as internal
coordinates. The GNEIMO method is a generalized ICMD
method based on spatial operator algebra, for performing
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multibody dynamics of macromolecules. Constraints on the
high frequency bond lengths can be placed in the GNEIMO
method to perform ICMD simulations with the bond angles
and torsion angles as degrees of freedom. If both the bond
lengths and bond angles are kept rigid, the resulting torsional
MD method is also supported by GNEIMO. In the GNEIMO
torsional MD method, the bond length and bond angle degrees
of freedom are treated as rigid and the macromolecule of tree
topology is modeled as a collection of rigid bodies (of varied
sizes) connected by flexible hinges. The rigid bodies also
known as clusters can vary in size and shape ranging from a
single atom to a methyl group, or a helix or an entire domain of
a protein. The hinges connecting the rigid clusters are the
torsional degrees of freedom. However, these hinges have one
to six degrees of freedom, with the one degree of freedom being
just the torsion angle. When the hinge has six degrees of
freedom, it allows the bond stretch, bond angle bending, and
torsion about the bond connecting the clusters. The default
cluster model of proteins in the GNEIMO method is shown in
Figure 1.

When the bond lengths and bond angles are treated as rigid,
the equations of motion in ICMD become coupled and are
shown in eq 1

θ θ θ θ θ̈ + ̇ =( )( ( , ) ( ) (1)

where θ is the vector of the generalized coordinates (e.g.,
torsional angles), denotes the vector of generalized forces
(e.g., torques), θ( ) denotes the mass matrix (moment of
inertia tensor), and θ θ ̇( , ) includes the velocity dependent
Coriolis forces. The dynamics of motion is obtained by solving
eq 1 for the θ̈ acceleration and integrating them to obtain new
velocities and coordinates. With conventional algorithms, the
equations of motion involve calculating the inverse of the dense
mass matrix that scales as the cubic power of the number of
degrees of freedom.4 The GNEIMO method uses a spatial

operator algebra based method to derive an analytical
expression for the inverse of the mass matrix followed by the
following expression for θ̈

θ ψ ψ

ψ

̈ = − * − + +

− * *

−I[ ] [ ( )]1

(2)

The , ψ, , etc., terms in the above expression are associated
with mass matrix related factorizations and are described in
detail in refs 5 and 19.
The expression on the right can be evaluated using recursive

algorithms whose cost scales just linearly with the number of
degrees of freedom and thus provides a computationally
tractable method for solving the equations.5,10,14,25 This
recursive algorithm described in detail in ref 5 avoids the
computationally intensive inversion of the dense mass matrix
shown in the matrix equation in eq 1. We further extended this
method to simulate the canonical N, V, T ensemble with
constant temperature dynamics using the Nose−́Hoover36,37
thermostat method. The torsional MD equations of motion for
the Nose−́Hoover ICMD method are given below.

θ θ θ θ θ θ θ̈ + ̇ + ̇ =( ) ( , ) ( , ) ( ) (3)

η
τ

= −
⎡
⎣⎢

⎤
⎦⎥

T
T

1
12

B (4)

Here is the additional frictional force term due to the
canonical ensemble25 which is dependent on η, the dynamic
variable representing the thermostat, τ is the mass parameter of
the thermostat, T is the instantaneous temperature, and TB is
the thermostat temperature. Since the GNEIMO Nose−́
Hoover equations of motion shown above are similar to the
equations of motion in eq 1, all the spatial operator equations
and factorization discussed in ref 5 hold good for these
equations as well. The Nose−́Hoover thermostat mass
parameter τ was optimized to be 10 times the time step size
for torsional MD simulations.25 The accuracy and stability of
the GNEIMO torsional MD simulations were measured by the
conservation of the total Hamiltonian and the extent of
fluctuations in the temperature. We had applied this form of the
GNEIMO method to studying protein dynamics.7,8 Other
research groups such as Brooks and co-workers and Schweiters
and co-workers adapted the GNEIMO algorithm into
CHARMM and NIH-XPLOR programs for ICMD simula-
tions.9,27

However, the systematic biases in the probability density
functions calculated from ICMD simulations arising from the
rigidity of the model remain to be solved. To rigorously correct
for the systematic biases in the probability density function
caused by treating stiff bond angles as rigid, Fixman proposed a
compensating potential of the form16

θ θ
θ

≜
q

kT( )
1
2

ln
det{ ( )}

det{ ( , )}f
B 0 (5)

where B denotes the mass matrix in the full BAT coordinates,
q0 the coordinates for the frozen degrees of freedom, k the
Boltzmann constant, and T the temperature. While the Fixman
potential16 removes such biases, it was computationally
intractable for generalized branched molecules and hence
remained untested and unused for several decades for ICMD
simulations, except for small model systems such as C4 or
C5.24,31,32 We derived a spatial operator algebra based

Figure 1. Standard clustering scheme used for torsional MD in
GNEIMO shown for the tripeptide Ala-Tyr-Ala. The rigid clusters are
shown in a single color, and these clustered atoms move together as a
single unit. The gray rods and arrows represent hinges connecting two
clusters. Material: Reprinted with permission from ref 35. Copyright
2014 Wiley Periodicals Inc.
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algorithm that calculates the Fixman potential with just 24%
additional cost in the computation time.17,18 This method
which we call GNEIMO-Fixman is rigorous, general purpose,
low-cost, and applicable to general linear and branched systems
with little additional cost. More significantly, the GNEIMO-
Fixman method is also able to compute the partial derivatives of
the Fixman potential. These partial derivatives define the
additional forces, i.e., the Fixman torque, to be applied within
constrained MD simulations. This makes it feasible to use the
Fixman potential during the torsional MD simulations and test
the effect of the Fixman potential on recovering the accuracy of
the probability density functions and the dihedral transition
rates.
Testing of the Effectiveness of the Fixman Potential

and Torques in Torsional MD Simulations. To study the
effectiveness of the Fixman potential in recovering the
thermodynamic probability density function of torsion angles,
we performed torsional MD simulations with Langevin force
for various linear and branched molecular systems without
force fields. The effect of the Fixman potential can be most
clearly seen by comparing the probability density functions
calculated from torsional MD simulations with the Fixman
potential to the probability density functions calculated from
unconstrained Cartesian MD simulations. The results for the
alanine dipeptide are shown in Figure 2. Figure 2 has been
adapted from ref 18. Figure 2 shows the joint probability
distribution function of the two main chain torsion angles in
alanine dipeptide. It is seen from the plots that the torsional
MD introduces biases in the joint probability density function
that are removed when the torsional MD simulations are
performed with the Fixman potential and the torques. The
magnitude of the Fixman potential is much smaller in
comparison to the potential energy from the all-atom force
field. There are some bond angles in the protein that are weakly
coupled to the dihedrals and the nonbond forces while other
bond angles such as backbone bond angles that show strong
coupling to the dihedrals and the nonbond forces. Although the
Fixman potential corrects for the errors in the probability
density function stemming from treating stiff and uncoupled
bond angles as rigid, it does not do so for soft bond angles that
couple to the torsion angles or the nonbond interactions.
There are two approaches for eliminating the bias in the

potential energy surface imposed by treating the bond angles
that are coupled to torsions and nonbond interactions, as rigid.
The first approach is to open up some of the bond angles and
treat them as movable degrees of freedom in the ICMD

simulations. We refer to this as “hybrid internal coordinate
molecular dynamics”. This approach reduces rigidity and the
error in probability density function and transition rates, with
little impact on time step size. The second approach is to use
correction torsional potentials that compensate for the rigidity
in the coupled bond angles to recover the probability density
function. Examples of this approach are the ECEPP family of
force fields38,39 or ICMFF9,34 that correct the torsional angle
potential for all of the bond angles. The ICMFF corrects the
force constants used for the torsional angle potentials by
refitting the torsional energy curve obtained from the rigid
model to the torsional energy curve calculated using the flexible
model. The force constants thus obtained will reproduce the
torsion energy barriers of the flexible Cartesian model. Chen et
al. showed that this method enhances the number of dihedral
transitions during the torsional MD simulations. The possible
caveat with this method is that it is not rigorous and is system
specific. The ICMFF has been tested for alanine dipeptide and
remains to be tested for larger systems. In summary, it is
necessary to treat the bond angles that show strong coupling to
torsion angles as flexible degrees of freedom in order to achieve
thermodynamic accuracy in the probability density function.
However, this is not required if the torsional MD simulations
are used for structure prediction applications. This is because
the goal in structure prediction applications, such as refining the
loop structures in proteins, is to enrich the native ensemble by
widening the conformational sampling and generally not in
recovering the accuracy of the partition function of the
Cartesian MD simulations.

Theoretical Methods and Algorithm Development for
a Robust Long Time Scale GNEIMO ICMD Simulation
Method. Besides the two major challenges (described above)
that have hampered ICMD method development, there were
other developments that were required to make the ICMD
method robust and suitable for long time scale simulations.
Several research groups have shown that constrained ICMD
models are not the limiting case of stiff Cartesian models.22,40

To address the differences between constrained ICMD models
and Cartesian models of the molecule, we showed that the
application of the conventional equipartition theorem that is
based on the Cartesian model to the ICMD model in internal
coordinates does not yield an equipartition principle analogous
to that for Cartesian models. Instead, the ensemble averages
involve configuration dependent coupled coordinates, that are
not easy to interpret or use. Therefore, we introduced a
coordinate transformation to modal coordinates that transforms

Figure 2. Joint probability distribution function of the two backbone torsion angles in alanine dipeptide: (a) Cartesian simulations; (b) ICMD
simulations; (c) ICMD + Fixman simulations. The bin size for each axis is dθ = 18°. Material: Reprinted with permission from ref 18. Copyright
2013 AIP Publishing LLC.
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the system’s kinetic energy into a decoupled form similar to
that for Cartesian models. Additionally, we showed that using
the “modal velocity” coordinates one can derive an
equipartition principle for the ICMD model that is analogous
to the one for Cartesian models. This principle holds even
though the modal coordinates are not canonical coordinates in
the Hamiltonian sense. The equipartition principle based on
modal coordinates provides a method for the thermodynami-
cally correct initialization of velocities in ICMD simula-
tions.14,41

Software and Scalability of the GNEIMO Method. We
have developed a modular software package called GneimoSim
for efficient implementation of ICMD simulations.35 Gneimo-
Sim is quite possibly the first software package to include
advanced features such as the ICMD equipartition principle
and methods for including the Fixman potential to eliminate
systematic statistical biases introduced by the use of hard
constraints. Moreover, GneimoSim’s architecture allows it to be
extended and easily interfaced with third party force field
packages for ICMD simulations. GneimoSim includes inter-
faces to LAMMPS,42 OpenMM,43 and Rosetta force field44

packages. The availability of a comprehensive Python interface
to the underlying C++ classes and their methods provides a
powerful and versatile mechanism for users to develop
simulation scripts to configure the simulation as well as to
control the simulation flow. GneimoSim has been used for the
application studies highlighted in this paper. The alpha version
of the GneimoSim software is available for use for the research
community at http://dartslab.jpl.nasa.gov/GNEIMO/index.
php.
In Figure 3, the blue line shows the average run time for a

simulation for the start-up and solution of the equations of

motion in the GNEIMO algorithm without using a force field.
It shows the effective linear scaling of the dynamics equations
solver cost for the GNEIMO method in GneimoSim. The
average run time for calculating the forces using OpenMM with
GBSA (on a GPU) and using LAMMPS and Rosetta force
fields on a CPU are shown in yellow, red, and green lines,
respectively. The cost of running the equations of motion
solver in GNEIMO is equivalent to the force field cost of using
the AMBER force field with the generalized Born solvation

module on GPU using the openMM force field engine.
However, for larger systems, the cost of the GNEIMO
equations of motion solver will have a linear dependence
while the cost of the calculation of forces will show a higher
order increase in computational time. Additionally, the increase
in computational time for ICMD is compensated to an extent
by the ability to take larger time steps than are possible in a
Cartesian simulation.

Capabilities in the GneimoSim Software. We have
implemented in GneimoSim several methods that are routinely
used in MD simulations such as

1. Advanced integrators including Runge−Kutta, Lobatto,
adaptive CVODE, and Verlet integrators for stable long
time scale (microseconds) torsional MD simulations.14

2. An adaptation of the generalized Born solvation method
(GBSA) for implicit solvation.

3. Support for multiple molecules of any type, including
explicit solvent.

4. A temperature-based replica-exchange (REMD) meth-
od45 in which temperatures may be switched randomly
or probabilistically using the Metropolis algorithm.

5. Periodic boundary conditions for simulations with
explicit water.

6. Support for standard Cartesian simulations for compar-
ison.

7. User defined harmonic distance restraints between pairs
of atoms.

8. More recently, we have added Langevin dynamics46 and
accelerated MD (aMD)47 methods to GneimoSim.

3. RESULTS AND DISCUSSION
Building a Multiscale Simulation Method with ICMD.

The BAT coordinates are natural coordinates to describe a
bonded system like proteins and polymers. They also lend
themselves readily to freezing and thawing any internal
coordinate degree of freedom. For example, many torsional
degrees of freedom can be kept constrained during dynamics
such as freezing a whole helixin a protein structure, if needed.
This freeze and thaw can be done at the start of the simulation
or during the course of the MD simulations in the GNEIMO
ICMD method. We refer to the freeze and thaw technique on
the fly during the dynamics simulations as “dynamic
clustering”.14 The dynamic clustering scheme can be applied
automatically on the basis of user specified criteria to freeze and
thaw internal coordinate degrees of freedom. The default
clustering scheme for the GNEIMO torsional MD treats all the
torsions of the backbone and main chain as degrees of freedom.
All-torsion MD simulations may not be adequate for simulating
long time scale events such as large conformational changes in
proteins. Adaptable clustering strategies that allow change in
the cluster model of the protein during the simulations are
more suitable for simulating large conformational changes.
Poursina et al. demonstrated the use of an adaptive clustering
strategy for RNA simulations.48 Wagner et al. used criteria to
freeze secondary structure elements when performing folding
simulations at high temperature replicas and allow them to
thaw at lower temperature replicas. This approach was taken
from methods described in a previous work.21 However, it
should be noted that, since the freeze and thaw mechanism can
alter the pathway of the process being simulated, it is advisable
to use this method for conformational search purposes only.
Other criterion to freeze or thaw a degree of freedom is by

Figure 3. Average run times per step for the GneimoSim simulation
using different force fields. Systems tested correspond to different
proteins with increasing residue number. Standard clustering was used.
7165 cluster = human alpha-2-macroglobulin with 20 426 atoms.
Material: Reprinted with permission from ref 35. Copyright 2014
Wiley Periodicals Inc.
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using an upper threshold for the velocity, a hinge can be treated
as flexible if its velocity stays closer to the threshold velocity.
This ensures that torsions that undergo significant motion are
not treated as rigid. Additionally, monitoring the accumulation
of stress forces at a hinge that is treated rigid can be used to
make it flexible. This strategy has not yet been implemented in
the GneimoSim code.
Freeze and Thaw Scheme for Folding Proteins. We

have used the freeze and thaw strategy to fold four proteins
starting from their respective extended structure. The
secondary structure elements were predicted using sequence
information and built into the extended structure. GNEIMO
torsional MD with the replica exchange method was used to
run the folding simulations. The adaptive time step CVODE49

integrator using the Adams−Moulton method was used in
simulations for dynamic clustering. The CVODE adaptive
integrator ensures stable simulations while allowing rapid
conformational sampling of clustered rigid bodies, by adjusting
the time step size to avoid clashes that destabilize the MD
simulations. Using the MD trajectory of the B domain of
staphylococcal protein A, we calculated the population density
histogram shown in Figure 4. This figure also shows the

corresponding representative structures from each of the
conformational clusters. The x-axis is the root-mean-square
deviation (RMSD) of the backbone atom coordinates from the
crystal structure. Most of the conformations of 1BDD fall
between 5 and 7 Å. We used 12 temperature replicas ranging
from 300 to 1050 K. The folding process begins with the
extended structure with just the predicted helices using
secondary structure prediction methods. Initially, a small
number of interhelical contacts are made that collapses the
structure to a RMSD range of 12−16 Å. At 8−11 Å, slightly
incorrect protein topologies are explored that finally fold to the
correct topology below 7 Å. This example demonstrates the
rapid conformational sampling realized using the dynamic
clustering strategy.
Studying Domain Motion with GNEIMO. Large scale

domain motion caused by the low frequency modes in a protein

are often difficult to capture with Cartesian MD simulations.
The conformational transitions between the substates are often
affected by long time scale and rare events difficult to capture
within the relatively short (hundreds of nanoseconds) time
scale MD simulations. Enhanced sampling methods are
therefore often used to simulate the conformational transitions
in proteins.47,50−53 Some of the enhanced sampling methods
require explicit knowledge of the conformations for which the
transitions are being simulated, and therefore not readily
applicable to unknown systems. The temperature based REMD
method when used with Cartesian MD simulations often leads
to unraveling and reforming of secondary structure motifs.
Thus, the transitions are wasted in high frequency modes and
the extra thermal energy is not focused on searching in the low
frequency modes. We studied the use of REMD with GNEIMO
torsional MD simulations to see how effective they are in
conformational search in two highly flexible proteins, namely,
fasciculin and calmodulin.13 Calmodulin is a calcium signaling
protein that belongs to the EF-hand family of proteins. The
three-dimensional structure of calmodulin consists of two
domains, namely, the amino terminus (N-terminus) domain
and the carboxy-terminus (C-terminus) domain, that are
connected by a long helical stretch. Calmodulin is a dynamic
protein that exhibits major conformational changes in response
to calcium binding as revealed by NMR studies.54−56 Upon
binding to calcium, calmodulin samples a large ensemble of
structures that allows it to bind to a wide range of proteins.
There are several experimental studies on the dynamics and
conformational changes in calmodulin. These studies show that
there are two major steps involved in the conformational
changes: (1) upon removal of the bound calcium, the central
helix that connects the carboxy terminal domain and the amino
terminal domain collapses followed by (2) the dynamics of the
N-terminus domain relative to the static C-terminus
domain.54,55 Cartesian MD simulations in explicit solvent
showed the collapse of the central helix connecting the two
domains but could not map the entire dynamics ensemble
obtained from the NMR study.57,58 The GNEIMO-REMD
simulations with no bias potential were performed on the entire
calmodulin protein. The trajectory showed conformational
sampling of the collapse of the central helix, and the sampling
of various conformations resulting from the relative reorienta-
tion of the two domains. Although the collapse was observed in
the Cartesian MD, the flexibility of the N-terminus domain was
observed only in the GNEIMO-REMD simulations. Compar-
ison of the ensemble of conformations of the carboxy terminus
domain to the ensemble of conformations from NMR
experiments is shown in Figure 5. It is seen that the GNEIMO
conformations (shown in blue in Figure 5) cover most of the
NMR conformations.
Quantitative comparison of the average hydrogen bond

distances between residues showing hydrogen bonds in the
NMR structures56 (PDB ID: 1DMO) to those in the
GNEIMO-generated trajectories shows that about half of the
average distances calculated fall within one standard deviation
of the corresponding distances in the NMR structures.
GNEIMO torsional MD simulations on proteins such as
crambin and BPTI at 310 K have shown that the correlations in
the torsional motions of residues that are farther apart in space
can be captured in a shorter simulation time scale than with
Cartesian MD simulations. For example, in the case of BPTI,
analysis of correlation in the backbone torsion angles59 of
residues in two loops connected by a disulfide bond was shown

Figure 4. Backbone CRMSD histogram of a “dynamic clustering”
replica-exchange simulation of 1BDD, beginning from an extended
conformation containing predicted secondary structure elements with
representative structures. Helices treated as rigid bodies are shown in
broad ribbons. Material: Reprinted with permission from ref 14.
Copyright 2013 Wiley Periodicals Inc.
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to be strong in the millisecond level simulations of Shaw and
co-workers.60 We have shown that we could capture the
torsional angle correlations between residues 9 to 18 and
residues 35 to 40 in 100 ns of NVT GNEIMO torsional MD
simulations at 310 K.13

Application of GNEIMO to Protein Structure Refine-
ment. The GNEIMO algorithm has been implemented in the
software package CYANA for NMR structure refinement29 and
in NIH-XPLOR for X-ray crystal structure refinement.27 Brooks
and co-workers have tested torsional MD simulations based on
the GNEIMO algorithm for few proteins.9 However, this
method has not been tested for refining protein homology
models of lower accuracy compared to their respective crystal
structures. Due to the large number of protein structures of
similar proteins available in the protein data bank, homology or
template based modeling of related protein sequences has been
shown to be the most feasible and accurate method of
predicting protein structures. However, the target sequence has
to have a > 60% sequence similarity to the template crystal
structure. The accuracy of the model derived using homology
modeling methods depends on the sequence similarity between
the template and the target. There is an increasing need for
high throughput computational methods that refine low
accuracy homology models.61 Using Cartesian MD simulation
methods leads to refined structures only when used with
restraintswith the choice of restraints remaining arbitrary and
system dependent and hence difficult to automate.9,62−67

Starting from the homology based models, robust structure

refinement methods are important to derive high useful
accuracy models.
An efficient conformational sampling method and an

accurate energy function to identify the native structure are
the two important components of a structure refinement
algorithm. We have evaluated the usefulness of the conforma-
tional sampling afforded by GNEIMO-REMD with the
generalized Born solvation method in enriching the refined
structures compared to the starting decoy. This has been
studied for 30 CASP target proteins and other small
proteins.11,12 The GNEIMO-REMD method leads to a
refinement of up to 1.3 Å for 28 out of 30 CASP target
proteins. These torsional MD simulations using GNEIMO were
done without any experimental information as restraints. Figure
6 shows the contact map for one target (T0453) as an example
of the refinement using the GNEIMO method. Figure 6 shows
the contact map for refinement of the target protein T0453.
The contact map shows far is a given residue in the GNEIMO
refined model from its crystal structure. The white color
regions indicate the residue positions that are closer to the
native structure than the residues in the deep red regions. It is
evident from Figure 6 that the GNEIMO refined structure
shows significant refinement in the packing of the loop
structure against the core of the protein. The long-range
contacts between the loop residues 30 to 40 to those residues
between 40 and 60 improve remarkably from 14 to 16 Å to 2 to
4 Å, as seen in Figure 6.
While the GNEIMO method leads to substantial refinement

in the loop packing, the unconstrained Cartesian REMD
method shows unraveling and reformation of secondary
structure elements and hence is less effective in conformational
search. Thus, starting from homology models of varying
accuracy, the GNEIMO method shows improvement in
structure refinement without unraveling the structures. The
overall extent of refinement across many targets was modest
and needs further improvement. Additionally, the challenging
problem of picking the best refined structure still remains.

4. CONCLUSIONS

Future Advancements in the GNEIMO ICMD Simu-
lation Method. The ICMD simulation method is not a
replacement for the Cartesian MD method. We envision
developing an ICMD simulation method to perform MD
simulations in bond, angle, and torsion (BAT) coordinate
systems. Such a MD simulation method is highly suitable for
selecting and controlling the granularity of the dynamics model

Figure 5. Overlay of the conformations sampled in the GNEIMO-
REMD torsional MD simulations (shown in blue) of calmodulin
without calcium, to the NMR structures pdb ID: 1DMO (shown in
gold).

Figure 6. Refinement of the loop structure of the CASP target T0453. The contact map shows the distance to the decoy structure, and the contact
map in the third column shows how far each residue is refined corresponding to the native structure. Material: Reprinted with permission from ref
12. Copyright 2014 American Chemical Society.
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of proteins and polymers, and is a foundation for the
development of multiscale simulation methods for the
simulation of protein macromolecular complexes. The multi-
scale ICMD simulation method can also be used for real space
refinement of structural model fitting to low resolution
crystallography or electron microscopy data of large protein
complexes.68 Such a multiscale MD method is not available to
date.
Currently, studies of the large scale dynamics that govern

protein function commonly use all-atom Cartesian MD
simulations, often with geometric constraints. Such geometric
constraints can adversely impact the integration time-step size
and the stability of the dynamics. On the other hand, such
constraints to ICMD models are straightforward. ICMD
simulations thus yield larger integration time steps. Our recent
theoretical developments based on spatial operator algebra have
led to a robust long time scale ICMD simulation method
GNEIMO and associated toolkit known as GneimoSim. We
have demonstrated the power of the GNEIMO ICMD
technique with applications to protein domain motion studies
and homology model refinement studies. The results of these
applications have shown great promise in the wider use of this
ICMD technique. However, there remain extensions of the
methods that need to be addressed to harness the advantages of
ICMD methods to their fullest. Some of the possible extensions
are the following:

1. To calculate accurate conformational entropy using the
GNEIMO torsional MD simulation trajectories with the
quasi-harmonic analysis (QHA) method to improve the
accuracy while correctly including traditionally difficult
metric tensor correction terms.69

2. The second advancement in ICMD simulations will be to
extend the ICMD simulation method to allow movement
of certain bond angles that show strong coupling to the
dihedral angles. For example, it has been shown that the
bond angle hinged on the Cα atoms of a protein have
strong coupling to the backbone dihedral angles.70−73

We will extend the GNEIMO ICMD method to free up
desired bond angle degrees of freedom. This will lead to
a comprehensive suite of hybrid ICMD models that
bridge the wide gap between coarse grain torsional MD
and fine grain all-atom MD models. These hybrid ICMD
models, with all bond angles open, can also be used for
accurately calculating conformational entropy as dis-
cussed here.

3. GneimoSim software has enhanced sampling methods
such as Langevin dynamics, replica exchange method
implemented. GNEIMO can be readily combined with
other enhanced sampling techniques such as steered MD,
umbrella sampling, or accelerated MD (aMD)47 to name
a few.

With these improvements, the GNEIMO method will be
useful for applications to large protein dynamics simulations
with explicit solvent. The GNEIMO method can be used with
any type of force field such as an all-atom force field or a coarse
grain force field. We also envision using the GNEIMO torsional
MD method combined with the torsional Monte Carlo method
for protein structure prediction applications. In summary, the
GNEIMO method offers a comprehensive ICMD simulation
method that allows easy coarse graining of the dynamics model
ranging from all-atom to large domains of proteins being
treated as clusters.
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